Newton Raphson Method
Notice: this material must not be used as a substitute for attending
the lectures
1
0.1 Newton Raphson Method
The Newton Raphson method is for solving equations of the form f (x) = 0. We make
an initial guess for the root we are trying to find, and we call this initial guess x
0
.
The sequence x
0
, x
1
, x
2
, x
3
, . . . generated in the manner described below should converge to the exact root.
To implement it analytically we need a formula for each approximation in terms of
the previous one, i.e. we need x
n+1
in terms of x
n
.
The equation of the tangent line to the graph y = f (x) at the point (x
0
, f (x
0
)) is
y − f (x
0) = f
0
(x
0
)(x − x
0
)
The tangent line intersects the x-axis when y = 0 and x = x
1
, so
−f (x
0) = f
0
(x
0
)(x
1 − x
0
)
Solving this for x
1
gives
x
1 = x
0 −
f (x
0
)
f
0
(x
0
)
and, more generally,
x
n+1 = x
n −
f (x
n
)
f
0
(x
n
)
(1)
You should memorize the above formula. Its application to solving equations of the
form f (x) = 0, as we now demonstrate, is called the Newton Raphson method.
It is guaranteed to converge if the initial guess x
0
is close enough, but it is hard to
make a clear statement about what we mean by ‘close enough’ because this is highly
problem specific. A sketch of the graph of f (x) can help us decide on an appropriate
initial guess x
0
for a particular problem.
0.2 Example
Let us solve x
3
− x − 1 = 0 for x.
In this case f (x) = x
3
− x − 1, so f
0
(x) = 3x
2
− 1. So the recursion formula (1)
becomes
x
n+1 = x
n −
(x
3
n
− x
n − 1)
3x
2
n
− 1
Need to decide on an appropriate initial guess x
0
for this problem. A rough graph
can help. Note that f (1) = −1 < 0 and f (2) = 5 > 0. Therefore, a root of f (x) = 0
must exist between 1 and 2. Let us take x
0
= 1 as our initial guess. Then
x
1 = x
0 −
(x
3
0
− x
0 − 1)
3x
2
0
− 1
and with x
0
= 1 we get x
1
= 1.5.
Now
x
2 = x
1 −
(x
3
1
− x
1 − 1)
3x
2
1
− 1
2
and with x
1
= 1.5 we get x
2
= 1.34783. For the next stage,
x
3 = x
2 −
(x
3
2
− x
2 − 1)
3x
2
− 1
and with the value just found for x
2
, we find x
3
= 1.32520.
Carrying on, we find that x
4
= 1.32472, x
5
= 1.32472, etc. We can stop when the
digits stop changing to the required degree of accuracy. We conclude that the root is
1.32472 to 5 decimal places.
0.3 Example
Let us solve cos x = 2x to 5 decimal places.
This is equivalent to solving f (x) = 0 where f (x) = cos x − 2x. [NB: make sure
your calculator is in radian mode]. The recursion formula (1) becomes
x
n+1 = x
n −
(cos x
n − 2x
n
)
(− sin x
n − 2)
With an initial guess of x
0
= 0.5, we obtain:
x
0
= 0.5
x
1
= 0.45063
x
2
= 0.45018
x
3
= 0.45018
.
with no further changes in the digits, to five decimal places. Therefore, to this degree
of accuracy, the root is x = 0.45018.
0.4 Possible problems with the method
The Newton-Raphson method works most of the time if your initial guess is good
enough. Occasionally it fails but sometimes you can make it work by changing the
initial guess. Let’s try to solve x = tan x for x. In other words, we solve f (x) = 0
where f (x) = x − tan x. The recursion formula (1) becomes
x
n+1 = x
n −
(x
n − tan x
n
)
1 − sec
2
x
n
Let’s try an initial guess of x
0
= 4. With this initial guess we find that x
1
= 6.12016,
x
2
= 238.40428, x
3
= 1957.26490, etc. Clearly these numbers are not converging.
We need a new initial guess. Let’s try x
0
= 4.6. Then we find x
1
= 4.54573,
x
2
= 4.50615, x
3
= 4.49417, x
4
= 4.49341, x
5
= 4.49341, etc. A couple of further
iterations will confirm that the digits are no longer changing to 5 decimal places. As
a result, we conclude that a root of x = tan x is x = 4.49341 to 5 decimal places.
Notice: this material must not be used as a substitute for attending
the lectures
1
0.1 Newton Raphson Method
The Newton Raphson method is for solving equations of the form f (x) = 0. We make
an initial guess for the root we are trying to find, and we call this initial guess x
0
.
The sequence x
0
, x
1
, x
2
, x
3
, . . . generated in the manner described below should converge to the exact root.
To implement it analytically we need a formula for each approximation in terms of
the previous one, i.e. we need x
n+1
in terms of x
n
.
The equation of the tangent line to the graph y = f (x) at the point (x
0
, f (x
0
)) is
y − f (x
0) = f
0
(x
0
)(x − x
0
)
The tangent line intersects the x-axis when y = 0 and x = x
1
, so
−f (x
0) = f
0
(x
0
)(x
1 − x
0
)
Solving this for x
1
gives
x
1 = x
0 −
f (x
0
)
f
0
(x
0
)
and, more generally,
x
n+1 = x
n −
f (x
n
)
f
0
(x
n
)
(1)
You should memorize the above formula. Its application to solving equations of the
form f (x) = 0, as we now demonstrate, is called the Newton Raphson method.
It is guaranteed to converge if the initial guess x
0
is close enough, but it is hard to
make a clear statement about what we mean by ‘close enough’ because this is highly
problem specific. A sketch of the graph of f (x) can help us decide on an appropriate
initial guess x
0
for a particular problem.
0.2 Example
Let us solve x
3
− x − 1 = 0 for x.
In this case f (x) = x
3
− x − 1, so f
0
(x) = 3x
2
− 1. So the recursion formula (1)
becomes
x
n+1 = x
n −
(x
3
n
− x
n − 1)
3x
2
n
− 1
Need to decide on an appropriate initial guess x
0
for this problem. A rough graph
can help. Note that f (1) = −1 < 0 and f (2) = 5 > 0. Therefore, a root of f (x) = 0
must exist between 1 and 2. Let us take x
0
= 1 as our initial guess. Then
x
1 = x
0 −
(x
3
0
− x
0 − 1)
3x
2
0
− 1
and with x
0
= 1 we get x
1
= 1.5.
Now
x
2 = x
1 −
(x
3
1
− x
1 − 1)
3x
2
1
− 1
2
and with x
1
= 1.5 we get x
2
= 1.34783. For the next stage,
x
3 = x
2 −
(x
3
2
− x
2 − 1)
3x
2
− 1
and with the value just found for x
2
, we find x
3
= 1.32520.
Carrying on, we find that x
4
= 1.32472, x
5
= 1.32472, etc. We can stop when the
digits stop changing to the required degree of accuracy. We conclude that the root is
1.32472 to 5 decimal places.
0.3 Example
Let us solve cos x = 2x to 5 decimal places.
This is equivalent to solving f (x) = 0 where f (x) = cos x − 2x. [NB: make sure
your calculator is in radian mode]. The recursion formula (1) becomes
x
n+1 = x
n −
(cos x
n − 2x
n
)
(− sin x
n − 2)
With an initial guess of x
0
= 0.5, we obtain:
x
0
= 0.5
x
1
= 0.45063
x
2
= 0.45018
x
3
= 0.45018
.
with no further changes in the digits, to five decimal places. Therefore, to this degree
of accuracy, the root is x = 0.45018.
0.4 Possible problems with the method
The Newton-Raphson method works most of the time if your initial guess is good
enough. Occasionally it fails but sometimes you can make it work by changing the
initial guess. Let’s try to solve x = tan x for x. In other words, we solve f (x) = 0
where f (x) = x − tan x. The recursion formula (1) becomes
x
n+1 = x
n −
(x
n − tan x
n
)
1 − sec
2
x
n
Let’s try an initial guess of x
0
= 4. With this initial guess we find that x
1
= 6.12016,
x
2
= 238.40428, x
3
= 1957.26490, etc. Clearly these numbers are not converging.
We need a new initial guess. Let’s try x
0
= 4.6. Then we find x
1
= 4.54573,
x
2
= 4.50615, x
3
= 4.49417, x
4
= 4.49341, x
5
= 4.49341, etc. A couple of further
iterations will confirm that the digits are no longer changing to 5 decimal places. As
a result, we conclude that a root of x = tan x is x = 4.49341 to 5 decimal places.